基于实例的机器翻译(EBMT):
与统计方法相同,基于实例的机器翻译方法也是一种基于语料库的方法,其基本思想由日本著名的机器翻译专家长尾真提出,他研究了外语初学者的基本模式,发现初学外语的人总是先记住最基本的英语句子和对应的日语句子,而后做替换练习。参照这个学习过程,他提出了基于实例的机器翻译思想,即不经过深层分析,仅仅通过已有的经验知识,通过类比原理进行翻译。其翻译过程是首先将源语言正确分解为句子,再分解为短语碎片,接着通过类比的方法把这些短语碎片译成目标语言短语,最后把这些短语合并成长句。对于实例方法的系统而言,其主要知识源就是双语对照的实例库,不需要什么字典、语法规则库之类的东西,核心的问题就是通过最大限度的统计,得出双语对照实例库。
基于实例的机器翻译对于相同或相似文本的翻译有非常显著的效果,随着例句库规模的增加,其作用也越来越显著。对于实例库中的已有文本,可以直接获得高质量的翻译结果。对与实例库中存在的实例十分相似的文本,可以通过类比推理,并对翻译结果进行少量的修改,构造出近似的翻译结果。 这种方法在初推之时,得到了很多人的推崇。但一段时期后,问题出现了。由于该方法需要一个很大的语料库作为支撑,语言的实际需求量非常庞大。但受限于语料库规模,基于实例的机器翻译很难达到较高的匹配率,往往只有限定在比较窄的或者专业的领域时,翻译效果才能达到使用要求。因而到目前为止,还很少有机器翻译系统采用纯粹的基于实例的方法,一般都是把基于实例的机器翻译方法作为多翻译引擎中的一个,以提高翻译的正确率。
|